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Abstract

This paper uses recently developed kernel smoothing regression procedures and

uniform confidence bounds to investigate the forward premium anomaly. These new

statistical methods estimate the local time varying slope coefficient of the regression

of spot returns on the lagged interest rate differential. The uniform confidence bands

indicate the extent of the rejections of uncovered interest parity and find remarkable

variation in both regimes when the anomaly occurs, and also the magnitude of the
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slope coefficient estimate. Of particular interest is the fact that the time varying

slope parameter can be substantially explained by fundamentals such as monetary

growth rates, and also the volatility of US money growth, which is associated with

risk premium in many theoretical mdoels. Hence, the apparent deviations from

uncovered interest parity have explanations consistent with monetary models and

associated risk premium models.

Key words: Forward premium anomaly, Local Deviation from Uncovered Interest Parity,

Time-varying parameters, Local-stationarity, Kernel smoothing, Local-linear regression, Uniform

inference, Macroeconomic fundamentals.
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1 Introduction

One of the long standing issues in international finance has been the apparent failure of

the theory of Uncovered Interest Rate Parity (UIP ). The classic method for testing UIP

is to estimate the slope coefficient in a regression of spot returns on the lagged forward

premium, or equivalently, the lagged interest rate differential. While the slope coefficient

should be unity under UIP , most studies have found statistically significant rejections of

the UIP hypothesis, with the slope coefficient estimate invariably being quite large and

negative. This has become known as the forward premium anomaly. Hence most research

has been directed at understanding the reasons for the apparent rejection of UIP and to

try to account for it in terms of (i) time dependent risk premium, (ii) irrational agents

and segmented markets, (iii) peso problems, or (iv) econometric issues with the testing

of UIP . The dominant approach has been to explain the phenomenon by modeling a

time dependent risk premium. Overall, this approach has not been particularly successful

empirically.

The theory of UIP under rational expectations and a constant risk premium implies

that

Et(∆st+1) = (ft − st) = (it − i∗t ) (1)

is always an approximation which neglects the Jensen inequality terms, and possible time

dependent risk premium. It has become standard to test the theory from the regression

equation

∆st+1 = α + β(ft − st) + ut+1, (2)

where the theory of UIP implies α = 0, β = 1 and ut+1 being serially uncorrelated1.

1Some studies such as Hansen and Hodrick (1980), Hakkio (1981) and Baillie, Lippens and Mcmahon

(1983) tested the theory with overlapping data where the maturity time of the forward contract exceeds

the sampling interval of the data. These studies still find rejection of UIP.
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However, an increasing number of studies have come to recognize the fact that departures

from UIP are more pronounced in some periods than others. The usual way of represent-

ing the potential variation in the slope coefficient is by rolling regressions, as in Baillie

and Bollerslev (2000), Lothian and Wu (2011), etc. Other studies by Wolf (1987) have

used Kalman filtering with the β following a random walk or stationary autoregression;

while Bansal (1997) and Bansal and Dahlquist (2000) have allowed β to have two states

depending on the sign of the interest rate differental; and Baillie and Kilic (2006) use a

logistic smooth transiton regression to allow the β parameter to move slowly between the

two states which correspond to either UIP holding2, or alternatively a state with the

forward premium anomaly being apparent. These parametric specifications for the time

series behavior of the slope coefficient over time are necessarily heavily dependent on the

parametric specification of the time series process for βt.

While simple to apply in practice, the rolling regression technique is, however, highly

arbitrary in the sense that the number of observations used in the window is very subjective.

That is, there is no dependable criterion that one can use in choosing the right window size.

The method also tends to produce quite wide confidence intervals from OLS regressions

but does not allow any clear mehod for conducting statistical inference between different

regressions.

2It should be noted that a more general representation of UIP is to begin with a standard discrete

time, consumption based asset pricing model where the real returns of the representative investor are

Et

(
St+1−Ft

Pt+1

)(
U ′(Ct+1)
U ′(Ct)

)
= 0, where S and F are the spot exchange rate and forward rate in levels, P is

domestic price level and C is domestic consumption, and U ′(Ct) is the marginal utility of consumption in

period t. Then,

Et(∆st+1) = (ft − st)−
(

1

2

)
V art(∆st+1) + Covt

(
∆st+1pt+1

)
+ ρt, (3)

where ρt is the natural logarithm of the intertemporal marginal rate of substitution and is generally called

the “risk premium”. The above theory dates back at least to Hansen and Hodrick. (1983)
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One major novelty in this paper is to introduce the concept of Local Deviation from

Uncovered Interest Parity (LDUIP ), which is the specific amount that the parity condi-

tion is violated at each time point and is based on non-parametric and local smoothing

techniques developed for the local-linear regression introduced by Stone (1977) and by

Cleveland (1979). These techniques avoid the problems with rolling regressions and pro-

duce kernel smoothed regressions. They also allow statistical inference to be conducted on

the parameters. The method assumes that the regression parameters are smoothly varying

functions of time, and circumvents possible abrupt and sudden changes in the parameters.

The method also enables the construction of uniform confidence bands (UCB) of the slope

coefficient from its local-linear regression estimate. Hence the slope coefficient of the for-

ward premium regression can be tested for any parametric specification of the unknown

function. The generated LDUIP process and its associated UCB indicate the extent and

significance of possible violations of UIP at any point of time.

A further interesting issue centers on the reasons for the changes in the relatively smooth

pattern of the LDUIP and to what extent they can be predicted by macroconomic funda-

mentals and, or variables associated with time dependent risk premium. Some evidence

is presented in section 4 of the paper that indicates a substantial role for lagged macroeco-

nomic fundamentals and variables associated time risk premium, to have predictive power

in explaining the movements of the time varying parameter in the forward premium re-

gression.

The organization of the paper is the following: Section 2 introduces the model frame-

work, and the forward premium regression with smoothly varying coefficients is explained.

Section 3 then discusses the kernel smoothing regression and the construction of uniform

confidenc bands (UCB) for inference. Section 4 presents the empirical results including

the estimates of the time varying, estimated slope coefficients. The UCBs determine the

precise time and extent of the violation of UIP for each currency over the sample period.
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This section also includes evidence from regression tests and V ARs on the role of some

fundamentals and financial variables that appear related to changes in the slope parameter

of the forward premium regresion. Section 5 concludes the paper and discusses related

future research. The technical assumptions on the model and the details of the steps to

construct the UCB are relegated to an appendix.

2 Model framework

It is first worth noting that apart from the strong empirical evidence, there are also eco-

nomic reasons to allow the conventional regression in equation (2) to have time varying

parameters. For example, the model

∆st+1 = αt + βt(ft − st) + ut+1, (4)

can be justified from the approach of Chang (2013), where there is cross country speculation

in stocks and bonds. Then with financial traders with negative exponential utility, the

model implies a βt that is the population equivalent of a regression of spot returns on lagged

equity returns differentials. Extension of the model to include risk, or expectational error

leads to a βt that is the population equivalent of a regression of spot returns on a linear

combination of variables associated with risk or expectational errors. Another motivation

for time varying βt could involve adaptation of the Taylor rule used in the exchange rate

model of Engel and West (2005).

The approach taken on this paper is to be agnostic about the possible reasons for time

variation in the slope coefficient and to essentially model it without any strong restrictions.

Hence we estimate a model of the form

sτ+1 − sτ = β0 + β1(fτ − sτ ) + ετ+1, τ = 1, · · · , T − 1. (5)

where sτ is the log of the monthly spot exchange rate at time τ , quoted as the foreign
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price of domestic currency, while fτ is the log of the corresponding 30 day forward rate,

and finally ετ+1 is the stationary and serially uncorrelated disturbance term. In the above

and throughout the paper, the index τ is reserved to indicate discrete time. Since the

underlying unknown parameters β0 and β1 are specified as being deterministic and con-

tinuous functions of time, the traditional time index t is reserved for the continuous time

processes in [0, 1]. Hence the following specification with time-varying parameters is then

introduced to replace the traditional forward premium regression,

sτ+1 − sτ = β0

( τ
T

)
+ β1

( τ
T

)
(fτ − sτ ) + ετ+1, τ = 1, · · · , T − 1. (6)

where β0(·) and β1(·) are non-parametric functions of time which allows for potential time

variation in the model parameters. Another advantage of this framework is that it enables

simultaneous inference to be implemented for the unknown parameter functions.

Moreover, it is assumed that the regressors in (6) are locally stationary variables;

see Dahlhaus (1997) and Kim, Zhou and Wu (2010). In a relatively short time span,

they are approximately stationary. However, as the time horizon increases the variables

show the characteristics of non-stationary processes, such as time-varying moments. One

of the appealing features for this flexible class of non-stationarity is that its framework

can encompass a wide range of popular linear or non-linear time series processes, such

as various stationary processes or autoregressive processes with time varying parameters.

Further details of the assumptions for (6) are given in Appendix 1.

One of the main features of the analysis in this paper is that, apart from modeling

the time variation in the β1(·), it also provides quite precise UCB that clearly indicate

statistically significant departures from UIP . The precise reason for departures from UIP

and their relationship to macroeconomic fundamentals and time depedent risk premium

are investigated in section 4. Suffice to say, that these macro and financial variables are

found to play an important role in the time varying nature of the slope coefficient estimate
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in the forward premium regression.

3 Methodology

The forward premium regression (6) with the smoothly time-varying coefficients, are esti-

mated by using kernel smoothing techniques. This method allows one to perform estima-

tion and inference of the true underlying process without imposing any arbitrary parametric

assumptions on it. Thus, it minimizes the possibility of mis-specification. In addition, the

method is computationally very tractable.

3.1 Local-linear regression

For simplicity, let ∆sτ+1 := sτ+1 − sτ , x
/
τ := [1 fτ − sτ ] and β(t)/ := [β0(t) β1(t)],

where 0 ≤ t ≤ 1. Among various kernel smoothing techniques, the local-linear regression

method of Stone (1977) and Cleveland (1979) stands out due to its simple form, ease of

computation and analytical tractability. In contrast to other popular kernel smoothing

methods, such as the Nadaraya-Watson estimator of Nadaraya (1964) and Watson (1964),

the local-linear regression estimator does suppress the well-known boundary problem and

achieve nearly optimal statistical efficiency; see Fan and Gijbels (1996). The local-linear

regression estimates of the parameters in (6) are obtained by the following optimization:

(β̂(t), β̂
′
(t)) := argmin

(η0,η1)

T−1∑
τ=1

[
∆sτ+1 − x/τη0 − x/τη1 (t− (τ/T ))

]2
K

(
t− (τ/T )

b

)
(7)

where β̂(t)/ = [β̂0(t) β̂1(t)] are the estimates of the model coefficients, β0(t) and β1(t), and

β̂
′
(t)/ = [β̂′0(t) β̂′1(t)] are the estimates of their first-order derivatives, β′0(t) and β′1(t). Here

K(·) is a kernel function and b is a bandwidth. In this study, we employ the Epanechnikov

kernel K(x) = 3 max(1 − x2, 0)/4. The bandwidth is chosen by the generalized cross

validation (GCV ) procedure of Craven and Wahba (1979), and is described in detail in
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section (i) of Appendix 2. The weak consistency of β̂(t) given by (7) is proven in Theorem

1 of Kim, Zhou and Wu (2010):∥∥∥β̂(t)− β(t)
∥∥∥ = O

(
b2 +

1√
Tb

)
where b → 0, Tb → ∞, and ‖·‖ is a norm defined by Appendix 1. Alternatively, one can

instead consider the following jackknife bias-corrected estimator:

β̃(t) := 2β̂b/
√
2(t)− β̂(t) (8)

where β̂b/
√
2(t) is β̂(t) with b/

√
2 instead of the original bandwidth b.

A major motivation for using the kernel smoothed regression method in (7) comes

from the literature that has investigated the time series properties of the forward pre-

mium. In particular, Baillie and Bollerslev (1994, 2000), Maynard and Phillips (2001) and

Sakoulis, Zivot and Choi (2010) have found strong evidence that the forward premium, or

equivalently the interest rate differential is a long memory, fractionally integrated process.

There is also clear evidence that forward premium series are typically highly non-linear,

with possible break points. Hence the general class of non-stationary, locally stationary

process of Dahlhaus (1997), Kim, Zhou and Wu (2010) and Zhou and Wu (2010) seems an

ideal assumption for dealing with this type of time series 3.

3.2 Uniform confidence band

One of the important advantages of the kernel smoothed regression in (7) is that the

methodology allows the construction of uniform confidence bands (UCB) for the time

varying parameters β0(·) and β1(·) in (6). Given the UCB, one can perform simultane-

3Other possible approaches for dealing with time varying parameters are to be found in the articles by

Chen and Tsay (1993), Phillips (2001), Orbe, Ferreira and Rodrigues-Poo (2005, 2006) and Kim, Zhou

and Wu (2010)

9



ous inference for the true underlying process, which facilitates the testing of the shape

characteristics and subsequent tests for constancy, or linearity, etc.

In order to construct the asymptotic UCB of parameter βj(t), j = 0, 1, over t ∈ [0, 1]

with the confidence level 100(1 − α)%, α ∈ (0, 1), one needs to find two functions `j,n(·)

and uj,n(·) based on data, such that:

lim
n→∞

P{`j,n(t) ≤ βj(t) ≤ uj,n(t) for all t ∈ [0, 1]} = 1− α (9)

The main purpose of constructing the UCB in (9) is to test whether the parameter βj(t)

takes a certain parametric form. That is, using (9), we are able to test the null hypothesis

H0 : βj(·) = βj,θ(·), where θ ∈ Θ and Θ is a parameter space. For example, in order to test

H0 : βj(t) = θ0 + θ1t+ θ2t
2, one can simply check whether `j,n(t) ≤ θ̂0 + θ̂1t+ θ̂2t

2 ≤ uj,n(t)

holds for all t ∈ [0, 1]. Here θ̂i is the least squares estimate of θi, i = 0, 1, 2. If the condition

does hold for all t ∈ [0, 1], then we fail to reject the null hypothesis at level α. In contrast,

if the parametric fit of the function is not entirely covered by the constructed UCB, then

the null is rejected.

The advantage of the UCB over the traditional point-wise bands is that the UCB can

be used for simultaneous inference of an unknown function by allowing us to figure out

the overall shape of the function. In addition, the UCB is a more conservative confidence

band than the point-wise ones in that the UCB is wider than its point-wise copunter-

part. Thus, any test results based on the UCB would be more robust than those under

the point-wise ones. For these reasons, the UCB has recently gained more attention in

econometrics and statistics literature. For example, Wu and Zhao (2007) construct the

UCB for the trend of the global warming temperature series and show that the trend

has been increasing. Zhao and Wu (2008) consider a discretized version of the stochastic

diffusion model, and construct the UCBs of the conditional mean and volatility to test

their parametric specifications. Zhou and Wu (2010) show how to construct the UCBs
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of time-varying regression coefficients and apply the method for the Hong Kong circula-

tory and respiratory data. Kim (2013a) applies the idea of UCB to the semi-parametric

environmental Kuznets curve and test the hypothesis of an inverted U-shaped pattern for

the income-pollution relationship. Furthermore, Kim (2013b) constructs the UCB of the

long-run trend in unemployment rate, typically known as the NAIRU parameter of the

Phillips Curve, and conduct simultaneous inference of the structural parameter.

Given these various interesting results, we shall construct the UCB of the slope co-

efficient (6), and carry out inference. To our best knowledge, this is the first time that

one performs a UCB-based test on parametric specifications of the slope coefficient in the

forward premium regression. Technical details of constructing the UCB are summarised

in Appendix 2 of this paper.

4 Empirical results

The data used in this work are spot and one month forward exchange rate data involving

the nine currencies of Australian Dollar (AUD), Canadian Dollar (CAD), Swiss Franc

(CHF ), Danish Krone (DKK), British Pound (GBP), Japanese Yen (JPY ), Norwegian

Krone (NOK), New Zealand Dollar (NZD), vis a vis U S Dollar (USD), 4 which is

the numeraire currency in our study. This study uses end-of-month observations from

December 1988 through October 2010.

The estimates of the time-varying slope coefficient and their corresponding 95% UCBs

for the various currencies, are reported in Figures 1 and 2. The solid curves represent the

local-linear regression estimates of the slope coefficients in (7), while the dashed bands are

the 95% UCBs of the parameters. The optimal bandwidths for the local-linear regression

4The Euro that started in January 1999 is not used in this study to ensure that our sample is long

enough for the non-parametric estimation and inference.
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chosen by the GCV are also reported in the figures. The solid horizontal lines represent

the hypothesis that H0 : β1(·) = 1. Figures 1 and 2 also present the OLS estimates of

fixed β1 in (5) for reference. In addition, Table 1 reports the proportion of β̂1(t) > 1 for

each currency, where β̂1(t) is the local-linear regression estimate of β1(t) in (6).

As seen from Figures 1 and 2, there is a substantial amount of time variation in the

slope coefficients for all eight currencies, which are generally found to take both positive

and negative values across time. Except for the CAD and GBP , the slope coefficients

stay predominantly negative throughout the 1990s, which is consistent with studies such

as Baillie and Bollerslev (2000) and Lothian and Wu (2011). However, there is some

variation across currencies with the CAD having a positive slope coefficient during the

second half of the 1990s; and also for the GBP which is briefly positive around 1995.

There is also considerable evidence that the the slope coefficients for all eight currencies,

except for DKK, take positive values during from about 2007 onwards, which corresponds

to the severe financial crisis. The slope coefficient for the AUD, CAD, CHF , JPY ,

NOK and NZD, becomes increasingly positive during the late 2000s, while the slope

coefficient for the GBP is only barely positive during the period. This distinctive co-

movements among these slope coefficients is very pronounced during the crisis and highly

suggestive of common factors determining their movements. Furthermore, after 2010, the

slope coefficients for the DKK and GBP turn downward, while the coefficients for the

other six currencies continue to climb upward.

From Fama (1984), it is well known that the slope coefficient of forward premium

regression (5) can be expressed

β1 =
Cov (pτ , qτ ) + V ar (qτ )

V ar (pτ + qτ )

where pτ = fτ − E (sτ+1|Iτ ) is the risk premium and qτ = E (sτ+1|Iτ )− sτ is the expected

rate of depreciation. Here Iτ is the information set available up to time τ . Fama (1984)
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shows that β1 < 0 requires both Cov (pτ , qτ ) < 0 and V ar (pτ ) > V ar (qτ ). That is, if

β1(t) < 0 for some t, then both of these conditions are satisfied during that period. In

contrast, if β1(t) > 0, then at least one of these conditions are not satisfied. Figures 1 and

2 shows that throughout the financial crisis of late 2000s, we have either Cov (pτ , qτ ) > 0

or V ar (pτ ) < V ar (qτ ) for all the currencies, except for the DKK. Typically, investors

demand higher premium to keep holding depreciating currencies during financially unstable

periods such as the late 2000s, which leads to the positive co-movement between the risk

premium and expected depreciation during the period. This basic intuition appears to be

well illustrated in Figures 1 and 2 by the positive β1’s from the late 2000s.

4.1 Testing the UIP hypothesis

As previously explained, a great attraction of using the UCB of β1(·) in this study is

to carry out simultaneous inference of the unknown parameter function, and testing any

hypothesis is simply facilitated by checking whether the specification is contained by the

UCB. From Figures 1 and 2, it is easily seen that the null hypothesis is rejected at 5%

for all eight currencies, because the solid horizontal line (i.e. β1 = 1) cannot be entirely

contained by the 95% UCBs. In fact, even more general hypothesis H0 : β1(·) = c, where

c is some constant, and is also rejected at 5% for all the currencies, since no horizontal line

can be placed entirely within the constructed 95% UCBs.

The Local Deviation from Uncovered Interest Parity (LDUIP ) is given by

yτ+1 = ∆sτ+1 − β̂0
( τ
T

)
− β̂1

( τ
T

)
(fτ − sτ )

and the percentage of the number of times that β1(·) = 1 is not covered or included by

the UCB, is presented in Table 2. These results indicate that the percentage of occasions

when β1(·) > 1 is 75% for Canada and around 40% for the UK, Norway and New Zealand.

Table 3 shows corresponding percentages for when the direct UIP hypothesis β1(·) = 1
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is violated. The hypothesis is rejected for 62% of the time periods for the Australian $,

and over 30% of the time for all currencies except Canada and Switzerland. Hence the

empirical results confirm the forward premium anomaly for all the currencies for many of

the time periods.

The key reason for the rejection of the null H0 : β1(·) = c is that the slope coefficient

changes dramatically after the mid 2000s. For the AUD, CAD, CHF , JPY , NOK and

NZD, the coefficients increase significantly during this period. On the other hand, β1

for the DKK and GBP first increases during the early/mid 2000s, and then decreases,

dramatically for the DKK and mildly for the GBP , during the late 2000s, which leads

to the rejection of the null. Hence the approach in this study indicates the rejection of

UIP for many time periods, and an additional attraction of the procedure is that there is

clear co-movement among the slope coefficients for the different currencies. Large negative

coefficients in the 1980s and 1990s are replaced, for many currencies, with a reversal of the

forward premium anomaly after the financial crisis of 2008. This emphasizes the substantial

variation in the slope coefficient and the inappropriateness of asserting that the anomaly

exists for all time periods.

4.2 Determinants of the time varying beta: role of risk and fun-

damentals

Articles by Hansen and Hodrick (1983), Domowitz and Hakkio (1985), Hodrick (1987,

1989), Bekaert and Hodrick (1993), Baillie and Osterberg (1997), Mark and Wu (2000)

and Verdelhan (2012) have all provided detailed models of time dependent risk premium,

which have had variable degrees of empirical success. However, there has been no clear and

definitive model of time-varying risk that has been found to be reliable across currencies

and different time periods. The relatively smooth estimates of β1(·) obtained by the kernel
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weighted regresson show slow changes that turn out to be highly predictable from quite

conventional models of time varying risk premium and also asset model funamentals. Given

β̂1(·) from (6), the θ in (10) can be estimated by OLS and then a Wald test is used to

test the hypothesis that H0 : θ = 0 versus H1 : H0 is incorrect. Hence a rejection of

the hypothesis indicates that the violations of UIP can be at least partly explained by

standard fundamentals and measures of risk. The following regression is then estimated,

β̂1

( τ
T

)
− 1 = x

/
τ−1θ + ξτ (10)

where θ is a parameter vector and β̂1(·) is the non-parametric estimate5 of β1(·) in (6).

Here ξτ is a mean zero error that is uncorrelated with xτ−1. The covariates xτ−1 in (10)

are the following menu:

x
/
τ−1 =

[
∆mτ−1,∆m

∗
τ−1,∆yτ−1,∆y

∗
τ−1,

(
i2τ−1 − i∗2τ−1

)
, V arτ−2∆mτ−1

]
(11)

where ∆mτ−1 is the change in the log of the US money supply, ∆yτ−1 is the change

in the log of the US index of industrial production, (∗) denotes foreign equivalents, while(
i2τ−1 − i∗2τ−1

)
is the differential between squared nominal 30 day T Bill interest rates for the

relative volatility in the two bond markets; and V arτ−2∆mτ−1 represents the conditional

variance of US money growth rates. This last variable was generated from a GARCH

model, and is used following the findings in Hodrick (1989) and Baillie and Kilic (2006).

The Wald test statistics presented in Table 3 reveal substantial predictability of β̂1(·)

from information in the lagged fundamentals and risk premium variables in (11). Similar

analysis only based on information twelve months previously, as opposed to one month

ago, is presented in Table 4. Again, the Wald test overwhelmingly rejects the null of no

significance of the fundamentals for all cases for all eight currencies. The R-squared from

the regressions reported in Tables 3 and 4 ranges from 15% to 35% over the eight currencies

5The estimate β̂1(·) will be discussed extensively in the following section.
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being considered and indicate a substantial amount of predictability in the movement of

the local β̂1(·) coefficient6.

The regression parameter estimates corresponding to the Wald tests in Tables 3 and 4

for equation (10) are reported in Tables 5 and 6, respectively. The impact of US money

growth rates, and also the volatility of US money growth rates are seen to generally be

statistically significant and positive for most of the currencies. The exception is for the

Danish Krone, which moves in the opposite and non-intuitive direction. Overall, the

effects also indicate substantial non-linearities with shocks on US money growth rates and

its associated volatility leading to proprtional impacts of the interest rate differential on

spot exchange rate returns.

4.3 Conclusion

This paper has used recently developed kernel smoothing regression procedures to derive

uniform confidence bounds to investigate the forward premium anomaly, where spot cur-

rency returns are generally found to be negatively correlated with lagged interest rate

diffrentials, or forward premium. The econometric techniques used in this paper have

considerable advantages over simple rolling regression methods and they also provide rel-

atively tight confidence intervals. The results indicate remarkable variation in the time

periods where the anomaly occurs and where the deviatons from uncovered interest rate

parity (UIP ) are relatively small and fall within the bands of UIP . There is also some

considerable similarity in co-movements across currencies. Hence, contrary to the estab-

lished beliefs, the anomaly does not hold continuously and there are many time periods

6The inclusion of these variables in the standard rejection equation (10) would generally not lead to

significant results due to the relatively very high volatility of spot returns tendings to dwarf the far smaller

movements in the fundamentals. Hence our two-step analysis of the estimated beta slope coefficient has

more economic interpretation.
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where the hypothesis of UIP cannot be rejected. The departures from UIP throughout

the sample were found to be partly predictable and to be based on many of the standard

fundamentals associated with the monetary model, and also variables associated with time

dependent risk premium.

As previously noted, the traditional models for time dependent risk premium and other

explanations of the forward premium anomaly have not been very empirically successful.

The results obtained in this study, suggest there is exploitable information in a function of

the fundamentals and possible risk terms, which allow predictability of the extent, and even

degree of persistence, of the anomaly. An interesting issue for future research is whether

any existing models, or combination of models, might be consistent with this function of

information, and how the success of the models varies over time. A full investigation of

these issues is intriguing and is the subject of future research of the authors.

5 Appendix 1: Assumptions of Kernel Smoothing

First, we introduce notations. For any vector v = (v1, v2, . . . , vp) ∈ Rp, we let |v| =

(
∑p

i=1 v
2
i )

1/2
. For any random vector V, we write V ∈ Lq (q > 0) if ‖V‖q = [E (|V|q)]1/q <

∞. In particular, ‖V‖ = ‖V‖2. We denote L : [0, 1] × R∞ 7→ Rp as a measurable

function such that L(t,Fi) is a properly defined (p × 1) random vector for all t ∈ [0, 1],

where Fi = (· · · , ηi−1, ηi) with independent and identically distributed (IID) random errors

{ηj}j∈Z. Define the physical dependence measure (Wu, 2005) for L(t,Fi) as the following:

δq(L, k) = sup
t∈[0,1]

‖L(t,Fk)− L(t,F∗k )‖q (12)

where F∗i = (· · · , η∗0, · · · , ηi−1, ηi) is a coupled process with η∗0 being an IID copy of η0. For

discussion on this dependence measure, we refer to Wu (2005). For a class of stochastic

processes {L(t,Fi)}i∈Z, we say that the process is Lq stochastic Lipschitz-continuous over
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[0, 1] if the following condition holds:

sup
0≤t1<t2≤1

‖L(t2,F0)− L(t1,F0)‖q
|t2 − t1|

<∞ (13)

We denote a collection of such systems by Lipq. The required assumptions are:

Assumption 1. Let covariates xτ of (7) be

xτ = G(τ/T, Uτ )

where G := (G1, · · · , Gp)
> is a measurable function such that G(t,Uτ ) is well-defined for

each t ∈ [0, 1]. Here Uτ = (· · · , uτ−1, uτ ) with IID errors {uj}j∈Z. Moreover, G(t, Uτ ) ∈

Lip2 and sup0≤t≤1 ‖G(t, Uτ )‖4 <∞.

It should be noted that the Assumption 1 allows the regressors xτ to be non-stationary

since their moments are allowed to be time-varying. Generally, the time variation in these

characteristics is assumed to be smooth, rather than abrupt. Note also that xτ is depen-

dent due to the cumulative IID random elements. Specifically, Assumption 1 ensures that

model regressors xτ are locally stationary (Dahlhaus, 1997), which is a mild form of non-

stationarity. That is, if one observes locally stationary variables in a relatively short time

span, they are approximately stationary. However, in the long run, the variables behave

as non-stationary ones. Since many economic variables are possibly locally stationary pro-

cesses, we can make our model specification more general by introducing this assumption.

For more on the local-stationarity, we refer to Priestley (1965), Dahlhaus (1997), Mallat,

Papanicolaou & Zhang (1998), Ombao, Von Sachs & Guo (2005) and Kim, Zhou & Wu

(2010).

Assumption 2. Let M(t) := E
[
G(t,U0)G(t,U0)>

]
. Then, the smallest eigenvalue of
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M(t) is bounded away from 0 on [0, 1].

This assumption prevents the asymptotic multicollinearity of regressors.

Assumption 3. The error ετ of (6) forms a stationary martingale-difference process

such that

ετ = H(Vτ )

where H(·) is a measurable function and Vτ = (· · · , vτ−1, vτ ) with IID errors {vj}j∈Z. Here

E(ετ |xτ ) = 0.

Note that this assumption allows the error term to be dependent but uncorrelated. The

dependence structure for ετ is flexible and general in that function H(·) is not specified.

For example, a stationary ARCH process (Engle, 1982) would satisfy these requirements.

Also, this assumption ensures that the error is uncorrelated with the regressors.

Assumption 4. Let U(t, Iτ ) = G(t,Uτ )H(Vτ ) where Iτ = (· · · , ζτ−1, ζτ ) and ζj =

(uj, vj)
/. Define

Λ(t) :=
∑
k∈Z

cov (U(t, I0), U(t, Ik))

where the smallest eigenvalue of Λ(t) is bounded away from 0 on [0, 1].

Assumption 5. Let
∑∞

`=0[δ4(G, `) + δ2(U, `)] <∞.

This assumption also ensures short-range dependence among the variables in our model.

The interpretation is that the cumulative effect of a single error on all future values is

bounded. The measure of dependence used here is the physical dependence measure (Wu,

2005) based on causal processes. This measure is known to be particularly useful for char-
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acterizing dependence in non-linear time series models (Wu, 2005; Wu & Zhao, 2007; Kim,

Zhou & Wu, 2010).

Assumption 6. The non-parametric functions β0(·) and β1(·) are twice continuously

differentiable over the compact domain [0, 1].

This guarantees that the parameter functions β0(·) and β1(·) change smoothly over

time. In particular, the second-order continuity of the parameters is required for the weak

consistency of the local-linear estimates of their first-order derivatives.

Assumption 7. Let the kernel function K(·) be bounded, symmetric, with bounded

support [−A,A], K ∈ C1[−A,A], K(±A) = 0 and supu |K ′(u)| <∞.

This allows popular kernel functions such as the Epanechnikov kernel, which is used in

the non-parametric estimation of β0(·) and β1(·).

6 Appendix 2: Construction of the UCB

Recall the bias-corrected estimator β̃(t), given by (8). Under Assumptions 1–7 and

Tb7 log(T ) + (log(T ))3

bT 2/5 = o(1), Theorem 3 in Zhou and Wu (2010) shows:

P

{√
Tb

λK
sup
t∈[0,1]

∣∣∣Σ−1(t)(β̃(t)− β(t)
)∣∣∣− dT ≤ u√

2 log(b−1)

}
→ e−2e

−u

(14)

where λK :=
∫
RK

2(u)du and Σ2(t) := M−1(t) · Λ(t) ·M−1(t) under Assumptions 2 and 4.

Here the centering parameter dT is defined by:

dT :=
√

2 log(b−1) +
1/2 log (log (b−1)) + 1/2 log

(∫
R(K ′(u))2du/ (4πλK)

)√
2 log(b−1)
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Note that the convergence rate to the asymptotic Gumbel distribution in (14) is

1/
√

log(T ), since b � T−α, α ∈ (0, 1). Given this slow rate of convergence, we employ the

following invariance principle (Zhou and Wu, 2010):√
Tb

log(T )
sup
t∈[0,1]

∣∣∣∣∣β̃(t)− β(t)− Σ(t)
T∑
τ=1

w∗T (t, τ)Zτ

∣∣∣∣∣ = oP(1) (15)

where Zτ ∼ NID (0, Id2) and w∗T (t, τ) = 1
Tb
K∗
(
t−τ/T
b

)
with K∗(u) = 2

√
2K(
√

2u)−K(u)

from the bias-correction. Here Σ(t) is introduced by (14). Then, by (15), it is then possi-

ble to construct the UCB of the slope coefficient β1(t), 0 ≤ t ≤ 1, in (6). The procedure

requires the following steps:

(i) (Bandwidth selection) Consider β̃(t) in (8) under some b and the Epanechnikov

kernel. Then, the fitted values for (6) would be ∆̂sτ+1(b) = β̃0(τ/T )+β̃1(τ/T )(fτ−sτ ), τ =

1, · · · , T − 1. Note here that ∆̂sτ+1(b) depends on b due to β̃0(τ/T ) and β̃1(τ/T ). To pick

up the optimal bandwidth, we consider:

S(b) = H(b)Y,

where S(b) :=
(

∆̂s1(b), ∆̂s2(b), · · · , ∆̂sT (b)
)/

, Y := (∆s1, · · · ,∆sT )/ and H(b) is a (T×T )

smoothing matrix that depends on b. The GCV criterion (Craven and Wahba, 1979)

chooses the optimal bandwidth bopt that minimizes the following criterion:

bopt := argmin
b

T−1
∑T

τ=1

(
∆sτ − ∆̂sτ (b)

)2
{1− trace[H(b)]/T}2

where the numerator represents the goodness-of-fit and the denominator can be viewed as

the model’s degrees of freedom (Kim, Zhou & Wu, 2010). We obtain (8) using bopt.

(ii) Compute sup0≤t≤1

∣∣∣∑T
τ=1w

∗
T (t, τ)Zτ

∣∣∣, where {Zτ} are generated as NID(0, 1) ran-

dom variables and w∗T (t, τ) = 1
Tb
K∗
(
t−τ/T
b

)
with higher-order kernelK∗(u) = 2

√
2K(
√

2u)−
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K(u).

(iii) Repeat (ii), say 1, 000 times, and then obtain the 95th quantile of the sampling

distribution of sup0≤t≤1

∣∣∣∑T
τ=1w

∗
T (t, τ)Zτ

∣∣∣, and denote it as q̂0.95.

(iv) Estimate Σ2(t) by:

Σ̂2(t) := M̂−1(t) · Λ̂(t) · M̂−1(t)

where M̂(t) and Λ̂(t) are the estimates of M(t) and Λ(t) in Assumptions 2 and 4. The

estimates are provided by Section 4.3 of Zhou and Wu (2010). Denote the (i, j)th element

of Σ̂2(t) by σ̂2
i,j(t).

(v) The 95% UCB of β1(t) is
[
β̃1(t)± q̂0.95σ̂2,2(t)

]
.
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Figure 1: The solid curve is the local-linear regression estimate of β1(·) in (6). The dashed

band is the 95% UCB of β1(·) and the solid horizontal line is H0 : β1(·) = 1. The dot-

dashed horizontal line is the OLS estimate of fixed β1 in (5). The GCV -chosen bandwidths

are (a) 0.35 (b) 0.36 (c) 0.28 (d) 0.30.
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Figure 2: The solid curve is the local-linear regression estimate of β1(·) in (6). The dashed

band is the 95% UCB of β1(·) and the solid horizontal line is H0 : β1(·) = 1. The dot-

dashed horizontal line is the OLS estimate of fixed β1 in (5). The GCV -chosen bandwidths

are (a) 0.33 (b) 0.27 (c) 0.27 (d) 0.30.
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Table 1: Proportion of β̂1(t) > 1

Currency Proportion

Australian Dollar (AUD) 0.2252

Canadian Dollar (CAD) 0.7557

Swiss Franc (CHF) 0.1832

Danish Krone (DKK) 0.0763

British Pound (GBP) 0.3931

Japanese Yen (JPY) 0.1489

Norweigian Krone (NOK) 0.4046

New Zealand Dollar (NZD) 0.4504

Table 2: Proportion of β1 = 1 violating 95%UCB

Currency Proportion

Australian Dollar (AUD) 0.6260

Canadian Dollar (CAD) 0.1565

Swiss Franc (CHF) 0.1489

Danish Krone (DKK) 0.3015

British Pound (GBP) 0.2023

Japanese Yen (JPY) 0.4122

Norweigian Krone (NOK) 0.3969

New Zealand Dollar (NZD) 0.4084
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Table 3: Wald statistic and p-value for (10) with lag=1

Currency Wald statistic p-value

Australian Dollar (AUD) 53.25 < 0.001

Canadian Dollar (CAD) 85.72 < 0.001

Swiss Franc (CHF) 30.19 < 0.001

Danish Krone (DKK) 99.87 < 0.001

British Pound (GBP) 140.23 < 0.001

Japanese Yen (JPY) 111.06 < 0.001

Norweigian Krone (NOK) 51.21 < 0.001

New Zealand Dollar (NZD) 36.62 < 0.001

Table 4: Wald statistic and p-value for (10) with lag=12

Currency Wald statistic p-value

Australian Dollar (AUD) 49.11 < 0.001

Canadian Dollar (CAD) 81.58 < 0.001

Swiss Franc (CHF) 28.28 < 0.001

Danish Krone (DKK) 85.32 < 0.001

British Pound (GBP) 51.13 < 0.001

Japanese Yen (JPY) 39.19 < 0.001

Norweigian Krone (NOK) 49.44 < 0.001

New Zealand Dollar (NZD) 45.65 < 0.001
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Table 5: Estimates of the coefficients in (10) when lag=1; The numbers inside the brackets are the corresponding

p-values. The coefficients significant at 5% are in bold.

Currency US money Foreign money US production Foreign production T-Bill differential US money volatility

AUD −32.88
(0.4802)

−46.28
(0.0037)

−18.24
(0.3002)

−165.8
(0.0045)

0.0279
(3.68×10−6)

6.6× 10−4
(0.6525)

CAD 126.7
(0.0367)

84.26
(0.0120)

18.97
(0.4102)

79.67
(0.3153)

0.0363
(0.0248)

0.0114
(2.92×10−9)

CHF −10.52
(0.8783)

25.84
(0.3304)

−3.89
(0.8770)

−3.87
(0.8027)

−0.0887
(0.0003)

0.0076
(0.0007)

DKK −60.75
(0.0395)

−17.99
(0.0043)

−54.97
(0.0006)

4.29
(0.0366)

−6.97× 10−3
(0.1333)

−6.63× 10−3
(4.22×10−13)

GBP 74.46
(0.0077)

−18.52
(0.2822)

3.59
(0.7352)

1.045
(0.7378)

0.0461
(<2.00×10−16)

−2.69× 10−3
(0.0019)

JPY −69.45
(0.1183)

−9.98
(0.2185)

−13.46
(0.4257)

2.258
(0.6056)

−0.1539
(<2.00×10−16)

0.0053
(0.0003)

NOK 237.25
(0.0018)

3.5596
(0.9166)

35.35
(0.2998)

−9.999
(0.2228)

0.0658
(5.57×10−6)

0.0113
(1.93×10−6)

NZD 182.03
(0.0343)

8.9843
(0.8389)

13.08
(0.6910)

−26.64
(0.2997)

0.0247
(0.1228)

0.0122
(1.56×10−5)
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Table 6: Estimates of the coefficients in (10) when lag=12; The numbers inside the brackets are the corresponding

p-values. The coefficients significant at 5% are in bold.

Currency US money Foreign money US production Foreign production T-Bill differential US money volatility

AUD −53.79
(0.2608)

−41.62
(0.0095)

−26.54
(0.1359)

−186.8
(0.0020)

0.0256
(2.42×10−5)

1.91× 10−3
(0.2094)

CAD 136.76
(0.0316)

95.57
(0.0064)

6.0913
(0.7970)

−10.21
(0.9006)

0.0384
(0.0206)

0.0117
(7.08×10−9)

CHF 33.87
(0.6383)

24.87
(0.3609)

−28.57
(0.2697)

−6.72
(0.6761)

−0.0662
(0.0083)

0.0075
(0.0014)

DKK −43.28
(0.1591)

−16.74
(0.0100)

−55.99
(0.0009)

4.62
(0.0326)

−0.0111
(0.0201)

−6.78× 10−3
(1.97×10−12)

GBP 107.9
(0.0001)

−49.95
(0.0124)

4.72
(0.6512)

1.682
(0.5895)

0.0173
(0.0002)

−3.10× 10−3
(0.0004)

JPY −106.9
(0.0352)

−9.116
(0.3136)

−25.62
(0.1761)

2.619
(0.5973)

−0.0956
(3.90×10−8)

4.17× 10−3
(0.0123)

NOK 274.63
(0.0006)

23.90
(0.4927)

−15.55
(0.6564)

−1.88
(0.8240)

0.0507
(0.0006)

0.0112
(7.8×10−6)

NZD 181.94
(0.0351)

10.84
(0.8091)

−15.99
(0.6224)

−26.71
(0.3016)

−0.0158
(0.3164)

0.0116
(5.6×10−5)
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